INSI

echniques for Microsoft €

September 1991
Vol 2 No. 9

DE MICROSOFT C

Saving space with data compression

By Gary Conway
See Listing 1A on page 13

ata compression is an easy concept to understand.
D It's simply any technique that lets you take

information in one format and convert it to a format
that requires less memory or disk space. However, data
compression is a relatively new topic (it was impractical
before computers came along), and it can be very confusing
since many compression algorithms have their bases in
mathematics and information theory.

As we examine the topic of data compression, we'll
cover a bit of background about the two types of data com-
pression techniques. Then, we'll look ata method called Run
Length Encoding (RLE). While RLE is not a is

you must know beforchand that the input data stream con-
tains no ASCII ¢l You can use

methods that are similar, but each presupposes a knowledge
of the data structures contained in the incoming data stream.
In short, logical compression techniques don't provide
solutions to generic data compression.

Physical compression

Unlike logical ¢ ion, physical comp requires
no prior knowledge of the data in the input stream and thus
has much hmadcr npphunon We'll concentrate on physi-

other methods currently in use, it’s a good scheme to study

for newcomers to the subject of data
we'll present a program that implements the RLE algorithm.

Two data compression types:
logical and physical

Almost all data compression techniques fall into one of two
basic categories: logical or physical. The primary dnunmun

icatedas cal s in the of this article.
Ni u]l buppn:islon wns one of the first physical compres-
Finally, sion use, This tec] scans

the input stream for contiguous blocks of hl:nk or null
characters and replaces each block with one ordered pair of
characters—a special compression character and a count
character. The IBM 3780 BISYNC mmsmL\\lon protocol still
employs this toincrease

You can explore several other physical mmpmsmn

between these two categories is that logical [
techniques know in advance and take advantage of the
nature of the input data stream—physical compression
techniques do not.

Logical compression

Togetafeeli how logical comp works, let's look
at two logical compression techniques. First, let's suppose
you want to compress a dBASE database file. It's a pretty good
bet that not all the fields in each record are filled. With this in
mind, your can replace unused bylc positions with special

This type is useful,
.Allhuugh not universally :pphcahlc hccm.bc it requires prior
knawkdge of the file structure.

including Run Length ing,
H.df-bytt Packing, Diatomic Encoding, Relative Encoding,
Huffman Encoding, and Adaptive Encoding. Just as with

performance when you use them correctly and deteriorated
performance when you use them incorrectly. Correctly—in
Continued on page 2

* Saving space with data compressionce.e. 1
* Assert thyself. L S
* An inp() problem on fast mach 6
¢ Writing your own mathers() and deml)“

another logica P
compressing. Ah(1l files that contain no extended ASCll
characters—those characters with ordinal values greater
than 127. In this case, the eighth bit of cach character is 0, so
you can shift the entire input data stream by 1 bit for cach
character, thus reducing the file size by 12,5 percent. Again,

* The six time math library
* New, improved probability fu 12
* Source code listings

sssassreroiisess 33

A Publication of The Cobb Group

INSIDE MICROSOFT G

Inside Microsoft C (ISSN 1047-6075) is published monthly by
The Cobb Group.

Prices: Domestic $69)yr. ($7.50 each)
Outside US. ... $89)yr. ($9.00 each)

Address: The Cabb Group
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

Tollfree .. (800) 223-8720
Local.....(502) 491-1900
FAX (502) 491-4200

Staff: Editor-in-Chief ...
Consulting Editor ..

Phone:

Publisher.....

Address correspondence and special requests to The Editor,
Inside Microsoft C, at the address above. Address subscriptions,
fulfilment questions, and requests for bulk orders to Customer Rela-
tions, at the address above.

.Douglas Cobb

Postmaster: Send address changes to Inside Microsoft C, P.O.
Box 35160, Louisville, KY 40232. Second class postage is paid in
Louisville, KY.

Copyright © 1991, The Cobb Group. All rights reserved. Inside
Microsoft C is an independently produced publication of The Cobb
Group. No part of this journal may be i fashion

il
Saving space with data compression
this case—means choosing the proper compression tech-
nique that yields the smallest file in the least amount of time.
On occasion, the best method is actually a combination of
techniques. That is, you pipe the output from one method
into the input of another method. Although the end results
are nondlinear, they can be very attractive.
You can use several statistics (0 evaluate the effective-
ness of data compression techniques. One typical measure

the length of the input stream divided by the length of the
output stream. A high compression ratio (greater than 1.25)
means the data are highly compressed; a low compression
ratio(1.01t0 1.25) h

acompression ratioless than orequal to 1 means compre:
failed, and the output stream is greater than or the same siz
as the input stream. Typically, you must balance your desired
compression ratio against the execution speed of the algo-
rithm since, as a general rule, execution time increases along
with the compression ratio.

Run En
Now that we've covered the basics of data compression, let’s
examine an actual comps on technique called Run Length
Encoding (RLE). RLE is a superset of the Null Suppression
algorithm. The RLE algorithm scans the input data stream for
runs of matching characters. Upon finding four or more
identical characters in a row—a run—it replaces them with
a special compression character and a count character.

The RLE algorithm responds only to runs of four or more
characters because it can't save space by encoding runs of
only two or three characters. This limit exists because the

ion

(except in brief quotations used in critical articles and reviews) without
prior consent of The Cobb Group.

The Cobb Group, its logo, and the Satisfaction Guaranteed
statement and seal are registered trademarks of The Cobb Group.
Inside Microsoft Cis a trademark of The Cobb Group. Microsoft Cis a
registered trademark of Microsoft Corporation. IBM is a registered
trademark of Intemational Business Machines, Inc.

Conventions
To avoid confusion, we'd like to explain a few of the conventions used
in Inside Microsoft C.

When we describe programs, we'll either print them as a figure in the
article (if the listing is small) or put the listings at the end of the journal and
use caliouts when we describe sections of the program. A callout isn't
guaranteed to compile or run because it is only a fragment of code.
C istings i atthe end ofthe

You'll also notice that the journal is peppered with words or
phrasesin font for function
names, reserved words, variable names, class names, and so forth to
show that they are references to the program or article topic.

We use the monospaced font whenever we print code in a callout
or refer to a function name, variable name, array name, class name, or

. Wher entities by i , we use
one of two styles: CapitalizingEachWord or underlining_between_words.

2 INSIDE MicrosoFT C

technique requires exactly three characters to
represent a run in compressed form.

=
ity B
2 .
3 <
A
— /=
3
=
b
o - 0.
o
5
7 5
' - =
ass? spvriock”

Wilbur never let practicality stand in the way of his quest
for new data compression techniques.

Before looking at any code, let’s manually work through
an example. Suppose you have the data

A.BB,CCC.DDDD.EEEEE

Asyou can see, the last two groups of characters—the 2
and E groups—both contain four or more identical charac-
ters, which makes them candidates for RLE compression.
After using RLE with the special compression character
0x90, the compressed output appears as

A,BB,CCC,DOx303, E0x90 4

Notice that RLE replaces cach compressible run with a
three-character sequence made up of the original character,
the compression character 0x90, and the number of addition-
aloceurrences of the original character in the run. In this case,
RLE reduced the number of bytes from 19 to 16 and realized
a 19 percent decrease in size and a compression ratio of e
or 1.19.

You canapply this method to all types of data becausc it
makes no assumptions about the type or format of the data.
However, you might wonder what happens if a 0x90
character—the compression character in this example—
actually appears in your file as data. You can handle this
simply by outputting the 0x90 character followed by a 0
count byte, This works because the RLE decompression algo-
rithm outputs a 0x90 character whenever it finds a 0 byte

ing a 0x90 in the co 1 file.

An example compression
program: RLE.C

Todemonstrate how RLEdatacompression works, we created
the RLE.C program in Listing 1A on page 13. This program
accepts the names of the input and output files as command
line arguments and compresses the data stream from the
input fileinto the output file. Asa precaution, we coded RLE.C
50 it wouldn’t overwrite existing files: If the output file
already exists, RLE reports the error and terminates.

RLE.C consists of two functions:msin() and Conpressor(] .
After main() opens the input and output files, it remains in a
while loop that calls Compresser() once for each character in
the input stream. Compressor() is a State machine with five
unique states: FirstTime, LoneChar, Smal IRun, SendRLECnt, and
SendNewChar. For each state, Compressor |) takes a different set of
actions and returns to the caller. Morcover, cach time
Compressor () returns, it cmits a return value that the while loop
writes to the output file (except, of course, in the case of EOF).

The FirstTime state

The first time main() calls Compressor () —or when the value of
State equals FirstTime—Cempressor() reads a character from
theinput file into the variable PrevC and sets State to LoneChar .
Then, Compressor() returns PrevC to the while loop inmain(),
‘which writes Preve to the output file, Compressor{ | enters the

FirstTime state only at the beginning of the input file and each
time after reading a 0x90 character from the input file.

The LoneChar state

Compressor() enters the LoneChar state each time it moves a
lone character from the input stream directly to the output
stream. The LeoneChar state determines whether this lone
character is the first in a run of four or more identical
characters (a large run}, the first in a run of two or three
characters (a small run), or not part of a run at all. Since
LoneChar is the most complex state in Compressor(), we're
going to examine its instructions in detail.

The first step Compressor(] takes in this state is testing
PrevC's (the previous character’s) value to see if it was the
Repeat character (0x90) or a regular character. If PrevC equals
Repeat and State equals LoneChar, Compressor() knows that
the previous iteration stored PrevC as a data byte, not as the
RLE repeat identifier. In this case, Compressor() identifies the
0x90 character as data by emitting a 0.

If PrevC is a regular character (not equal to Repeat),
Compressor() must determine if the next character from the
input file matches PrevC. If the characters don’t match,
Compresser() simply returns the newly read character and
remains in the LoneChar state. However, if the characters
match, Compressor () must determine if any succeeding char-
acters match—in other words, if there is a run of repeating
characters in the file.

When Compressor() encounters a run of characters, it
determines if it's a small run (fewer than four characters) or
a large run (four or more characters). If it's a small run,
Compressor() sets SmallCount to the run length, sets State to
Smal [Run, and emits the character in PrevC. However, ifthe run
is four or more characters, Compressor () sets Count to the run
length, State to SendRLECnt, and emits a Repeat character.

The SmallRun state

Whenever Compressor() finds a run of two or three matching
characters, it sets SmallCount to the length of the run and
enters the Smal [Run state. In the next iteration, Compressor()
executes the code following the case statement for the
Smal (Run state. Compressor() remains in the Smal [Run state for
either one or two iterations, depending on whether two or
three characters were in the run. Eventually, after emitting all
charactersin the small run, Compressor() switches back to the
LoneChar state.

The SendRLECnt state
After entering the SendRLECnt state and emitting a Repeat,
Compressor() exccutes the code following the case statement
for the SendRLECHt state. This code simply switches
Compresseor() to the SendNewChar state and emits the value
Count minus 2

Why Count minus 22 Since RLE encodes runs of only four
or more characters, you'll never use the repeat count values
1 and 2 if you interpret the repeat count literally. Therefore,

SEFTEMBER 1991 3

cters with i ifi and some

tohave the largest possible range of repeat counts,
normalize all repeat counts by subtracting 2. In this way, you
can represent repeat counts 3 to 257 by mapping them to
the range 1 to 255. Of course, you must account for this in the
decompression algorithm by adding 2 to Count before ex-
panding the run back to its original length.

The SendNewChar state

Compressor () reaches the SendNewChar state after emitting a
complete three<character encoded run. At this point, the
variable C holds the last character read from the input
stream—the character ending the run by not matching. For
the SendNewChar state, Compressor() scts State to LoneChar,

SE
compress data streams built (conceptually) of 4-bit nibbles
or 16-bit words instead of 8-bit bytes.

Our algorithm’s strong point is the way it differentiates
between compressible runs (four or more characters) and
non-compressible runs (two or three characters). Con-
sequently, it can achieve very high compression ratios.
However, there is a remote possibility you may encounter
files with high concentrations of 0x90 characters. Since cach
0x90 in the input stream results in two characters in the
output file, such files may result in low compression ratios.

If you're a real stickler for performance, you may alter
RLE.C and UNRLE.C to monitor the populations of all 256

PrevC to C, and emits the character in C. On the
iteration, Compressor() restarts the cycle by looking for a run
of characters matching PrevC.

The program continues switching between states
according to the above rules until it finds the end of the
input file. At that time, it closes the input and output files
and exits.

An example decompression
program: UNRLE.C

Similar to RLE.C, the UNRLE.C program in Listing 1B on page
14 accepts the input and output filenames as command line

and lata stream from the input
file into the output file. Also like RLE.C, UNRLE.C W
overwrite existing files. By simply glancing at UNRLE.C, y
can tell that decompression is a much simpler task than

ASCIIcl inthe inpy ically choose
the repeat as the one occurring least

in the input stream. As long as the compression and
decompression algorithms agree on when to switch from
one repeat character to another (based on the data in the
original input stream), such an approach will give you a
nearly bullet-proof RLE algorithm. Of course, this enhance-
ment will increase your algorithm’s average compression
ratio at the expense of execution time. In the end, you have
to decide when cnough is enough—do the advantages
gained by further enhancements to the algorithm justify
slower program execution?

Conclusion

Since understanding the concepts behind data compression
algorithms is often easier than implementing them, we hope
you can use RLE.C and UNRLE.C to begin your exploration of
data ¢ i

consistsofamain() function and ess()
function, which performs all decompression tasks. After
opening the input and output files, main() entersawhile loop
that calls Decompress() for cach character in the input stream.
Decompress() is a State machine just like the Compressor()
function in RLE.C. However, Decompress() is much simpler
and has only two states: FirstTime and Repeating.
Decompress() starts in the FirstTime state, writing all
input characters except Repeat (0x90) directly to the output
file. When Decompress () encountersaRepeat characterin the
inputstream, itswitches to theRepeat ing state. TheRepeating
state reads the next input character to sec if it's 0. If it is,
Decompress() writes a 0x90 to the output file; otherwise, it
enters awhile loop that expands the encoded run of charac-
1 h i runtothe output file.
Decompress() always switches back to the
ate after processing for the Repeating state

igi
In cither cas
FirstTime s
completes.

Some afterthoughts

The RLE implementation we've presented in this article—
while very effective—is just one of many RLE implemen-
tations used throughout the computer industry. Some use
repeat characters other than 0x90, some have special escape

4 Instoe Microsort C

Gary Conway is the president of Infinity Design Concepts
Inc. (IDC) and co-developer of the ZIP file format. For
information on IDC’s products—uwhich include NARCTM,
IDCSHELL™, and IDCCOM™ —call (502) 636-1234. 1

Got a hot tip?

Do you have a tip, trick, or routine you'd like to share
with other readers? If so, send it in. We may use your
idea as the basis for an article. If we publish your idea,
we'll give you a byline and pay you $25 or more,
depending on its scope and uscfulness. Send all
submissions, which become property of The Cobb
Group, to

Editor-in-Chief

