ii INSIDE MICROSOFT BASIC

September 1991
Vol. 2 No. 9

Extending Basic with custom runtimes

08/2 and Windows praise these systems' ability to

place sections of code common to many programs
into dynamically linked libraries (DLLS). Isolating functionsin
stand-alone librarics that programs access at runtime allows
several programs to share common sections of code. But you
don’t need OS/2 or Windows to use this technology. Mi-
crosoftimplementsit inall versions of its DOS Basic compilers
in the form of runtimes.

When you compile a Basic program without the /O
option, your executable file contains addresses for Basic
functions in the runtime rather than the actual code used to
perform the function. When you execute the program, Basic
loads the default runtime, and your program calls Basic
routines in that module. With Basic Version 6.0, Microsoft
included the ability to create custom runtimes. You can use
this feature to collect objects used by several Basic programs
and place them in DOS EXE or OS/2 DLL runtimes. Your Basic
programs can then use these routines as if they were part of
the Basic language.

This arrangement provides two important advantag

E vangelists of next-generation operating systems like

I When using runtimes, your executable files consume
less disk space because you don't link common routines into
every program; instead, you include them in the runtime.

2. Since you define the contents of the runtime, you can
include yourown i hird-party utiliti
portions of the default Basic runtime your programs don't
use. Of course, you must make sure the user doesn't delete
the runtime, or none of your programs can s the routines
it contained.

clude

In this article, we'll first take a look at the basic process
for creating a custom runtime. Then, we'll create a simple
basic subprogram and walk through the process of adding it
1o a runtime library. We'll also look at three special cases:
using Quick libraries with custom runtimes, reducing the size
of runtimes with stub files, and adding ISAM support to
runtimes. Finally, we'll discuss some caveats to keep in mind
when using runtime libraries.

The basics

‘The mechanics of creating a custom runtime are straightfor-
‘ward. First, compile all the routines you intend to add to the
runtime. Next, use a text editor to create an export list that

contains a list of the modules you want to add to the runtime,
st ofthe procedures you want to call from the modules, and
a list of libraries your procedures reference. Then, start the
BUILDRTM utility to actually create the runtime and its
support files. Finally, link your program files with the support
files BUILDRTM produces to create programs that use the
alternate runtime.

Before we look at an example of this process, you should
verify that you installed Microsoft Basic so you can generate
new runtimes. When installing Version 7.X, the Install pro-
gram asks whether it should delete the component libraries
it uses to generate the base system. In order to build alternate
runtimes, you must tell the Install program to retain the
component libraries. As a result, your LIB subdirectory will
contain the component library files listed in Table A.

Table A: Afternate runtime component libraries

B710BJ.LI8 B71mORN. LIB

B710BN.LIB B71mOEJ .LIB

B710RN.LIB B71mOEN. LIB

B715.LIB B71nLN.LIB

BLIBFP.LIB B71mCN. LIB

B871m0BJ.LIB EMn.LIB

B71mORJ.LIB 052.LIB (protected mode only)
B71m0BN.LIB

*m represents R for Real mode or P for Protected Mode

Ifyoudon’tsece these files in your LIB directory, you nced
to reinstall Microsoft Basic and tell the Install program to
retain the component libraries.

Creating a runtime library with
one subroutine

After you've configured the system, you're ready to create a
simple runtime. In order to demonstrate how to add your

Continued on page 2
* Extending Basic with custom runtimes
A better way to use BSAVE and BLOAD
* Compressing data With LZW
* Source code listings ...

ssessassasesssse 14

A Publication of The Cobb Group

DATA STORAGE TECHNIQUE
By Gary Conway and Blake Ragsdell

See Listing 2 on page 14

‘ imagine compressing data by hand? For example,
suppose you want to compress a 100K file with one

of the high-performance data-compression techniques avail-

able today. Let's assume your chosen compression method

requires you to maintain a table with 32,000 entries. To

compress the file, you must search the entire table lincarly—

de for data compression. Canyou

mputer

Compressing data with LZW

to the matching character on the hoard. You now have a
string table—or should we say board?

For example, the sentence Just earned my PHASE Il
wirggs would hang by the J in the word Just from our two-by-
four board. Next, to cach character in the sentence, we assign
the somewhat arbitrary codes

RARAARRRRRRRRRERRRRRRARRERRNY]

crude, but worl fe chbyte of the inp Iyou
allow one second for each scarch of the table, the 3.2 billion
probes would require more than 100 years to compress the
file. Hardly livable in the most literal terms. Fortunately,
computers can perform these probes in millionths of a
second, providing an extremely practical and cost-effective
platform for data compression. As we said, computers were
made for data compression.

In this article, we're going to examine the Lempel-Ziv-
Welch (LZW) compression algorithm. Once we cover a little
compression theory, we'll look at a program that implements
the LZW algorithm

The LZW algorithm
The LZW algorithm actually learns a file as it reads ir. By
learns, we mean that the algorithm gets better at compress-
ing a file as it reads more and more of the file, The LZW
algorithm essentially reads a character from the input file and
looks to sce if the character exists in a table of strings. If the
table contains the character, the algorithm looks at the next
character to see if this string of two characters exists in the
table. If it finds the pair of characters, it reads the next
character. The algorithm continues reading characters and
searching for matches in the table until it doesn't finda match.
When this occurs, the algorithm places an entry in the table
representing this newly located and now-memorized string.
Output from the LZW algorithm consists of codes. In this
way, it’s similar to the Huffman coding scheme, in which the
shorter bitlength codes generally represent the longer strings
of characters. Typically, code lengths begin at nine bitsand run
to 12 or 13 bits, with the shorter codes being assigned first.

The role of the string table

Without question, the most difficult concept of LZW com-
pression is the string table. To get a grasp of how the algo-
rithm ble, envisi ilinga by-fouron the wall
horizontally and writing all the characters of the alphabet on
the board. Now, imagine taking the sentences in this article
and writing them on pieces of string—using a very small
pen—one sentence per string. As you complete each string,
examine the first character of its string and pin this character

10 Insine MicrosoFT Basic

LAARRRRRRR}
01234567890123456783012345678

‘The code is merely the position the character holdsinour
table. More important than the code itself'is the fact that cach
code represents the entige string from that character all the
way to the start of the sentence.

If we encounter the string fust earned my free airline

| ticket in another sentence, we can use a single code—the

code representing the space " " right after the word my—to
represent the first 15 characters in the string. In this case, we
could store the new sentence as @irline ticket using just
the codes

OO

TYTYYYINYINYYYY
401234567830123

Asignificant benefit of LZW-coded files is that there's no
need toinchude the string table in the compressed file, as with
Huffman coding—thus, the LZW coding scheme increases
the amount of compression you get per file. Asyou'llsee later,
when you uncompress an LZW-coded file, you recreate the
table as you uncompress the file. Additionally, LZW is a
comparatively fast compression method because it requires
only a single pass through the input file. Other methods, like
Huffman coding, require two.

the string table
The LZW algorithm begins by creating an atomi ., Ba-
sic—table of characters in memory. Each entry contains two
values—a Prefix pointer and a Suffix character. It uses the
Prefix and Suffix arrangement to build long strings.

Table A shows how the string table appears after the LZW
algorithm initializes it. As you can se¢, when the compression
routine begins, the table contains just 256 entries—one for
each character in the extended ASCIT set, The LZW algorithm
uses the Prefix pointer to point to previous characters in a
string. When it initializes the table, there are no stringsand no
previous characters, so it sets this Prefix pointer to -1 to
represent a pointer to nowhere.

On the other hand, the initial values for the Suffix codes
range sequentially from 0 to 255. (Table A shows the ASCII

value followed by the character representation.) You must
initialize the table with all 256 values before you can start
compressing a file with the LZW method, since all files
contain some portion of the character set and there's no
simple way to predict which characters any given file will
contain or exclude.

Table A: The string table after initialization

Entry # Prefix pointer Suffix character
0 -1 0
1 = 14
2 -1 28
3 <t 3T
25 1 255
MaxCodes ” ”

Coding the algorithm

Now that you've gotten a feel for the nature of LZW compres-
sion and the structure of the string table, let’s see how you
might code the algorithm. For the moment, let's just use

<io-cod

pse the fthe
Figure A lists the steps required to compress a file using LZW
compression.

Figure A: The LZW compression algorithm in pseudo-code

Initialize the string table
Read char from input tile to Prefix
Loop:
Read char from input tile to Sutfix
It end of tile Then
Output the code for the Prefix
End program
It Prefix-Suffix pair exists in the table Then
Pretix = Code for Prefix-Suftix combination
Else Prefix-Sutfix combination not in table
Output the code for the Prefix
Insert the Prefix-Suffix combination
into string table as a new entry
Pretix = Suftix
Goto Loop

Let’s walk through a manual compression session to see
how the code in Figure A works with some characters from
a sample input stream. For example, suppose the first five
characters from a file you want to compress are ABCABA.

After we read the first two characters into Prefix and
Suffix variables, we can check to see if the table contains the
pair. Obviously, it won't, since they're the first pair of
characters. So we'll first write the Prefix character to the
output file.

Next, we'll formanew entry in the string table. This entry
has as its Prefix pointer a value that points to the table entry
with A as the Suffix byte—the 65th entry—which also
happensto be the ASCll value of A. The Suffix characterin this
new entry will be the letter B. At this point, the table will
contain the values shown in Table B, and the output file will
contain a single letter A.

Following the instructions in Figure A, we'll now assign
the value of Suffix to Prefix and go to the top of the loop to
read another character. When we apply our sample charac-
ters to the code, the current Prefix-Suffix pair is equal to BC.
After checking the table and not finding the pair there, we
output a B to the output file, add the pair of characters to the
table, assign a new Prefix value, and go to the top of the loop
to do it all over again.

Table B: The string table after inserting the first entry

Entry # Prefix pointer Suffix character
i 3 T4
25:5 -1 255
256 65 A 66 8
Hn:(Codes 7 7
We re; i the next

pair—CA—and end up with the values shown in Table C.

Table C: The string table after inserting the first entry

Entry # Prefix pointer Suffix character
0 - 0
1 A 1%

25) 25

256 65 4 6 8

257 6 8 67 ¢

258 8 C 6 4

MaxCodes ” ”

Now we're getting to the compression part. The next
pair of Prefix-Suffix characters is AB—and we have a match-
ing pair of charactersalready in the table at entry number 256.
Since the pair exists, we store 256 in the Prefix variable and
£0 to the top of the loop to read another Suffix character.
‘When we check to see if the pair (256)-C is in the table, we
find it isn't. So, we output the Prefix code to the output file,
insert the (256)- C pair of characters into the string table, and
50 on. Once this is done, the string table contains the values
shown in Table D on page 12.

Sepremser 1991 7/

Table D: The string table after inserting (256)-C

Entry # Prefix pointer Suffix character
0 i)
1 o 1

256 -1 25

256 65 4 6 8

257 6 8 67 ¢

258 68 C 65 4

259 2% 4 o7 c

MaxCodes ” ”

‘The output file contains the values shown in Figure B, in
which (256) represents the entry number for the Prefix pair
of AB.

Figure B: Current output file contents

ABC(256)C

The compressor continues learning strings in this way
until the input file is exhausted or the table gets filled up with
pairs of characters.

Uncompressing a compressed file
Unless our data is worthless, we'll want to restore it to its
origin format Figure C contains
a pseudo-code outline to uncompress our compressed file.
Ignoring some of the complexities we can encounter as we
uncompress our data, let’s see how we'd uncompress the
data stream in Figure B using the code in Figure C.

Figure C: The LZW uncompression aigorithm in pseudo-code

Initialize the string table
Read char from input file to Prefix
Repeat:
It Pretix < 256 output the ASCII character
Read char from input file to Suffix
It the suftix is a code
Expand the code
It Prefix-Suttix pair exists in the table Then
Pretix = Code for Pretix-Suffix combination
Else Prefix-Sutfix combination not in table
Insert the Pretix-Suftix combination
into string table as a new entry
Pretix = Sutfix
Until the end of the input file

The first step is to initialize the string table, just as we did
when we were compressing data. Next, we read a Prefix
character from the compressed file. Since the ASCII value of
Adisless than 256, we'll write it to the output file. Next, we'll
read a Suffix character—B, in this case—from the input file.
Since Suffixisn'tacode, we'll check to see if ABappearsin the
table—which it obviously won’t—and insert the entry into
the table. The values in the string table correspond to Table
B at this point.

Next, we'll set the new Prefix value, write it to the output
file, and get a new Suffix. Now the output file contains the
characters AB, the value of Prefix is B, and the value of Suffix
is C. Since the table doesn't contain a BC character pair, we'll
add them, set Prefix equal to C, and output it.

‘When we read the next character from the compressed
file, we find it's one of our compression codes—its value
being greater than 255. Let's take stock for just a moment.

Currently, th h inTable
E. Prefix is equal to C, Suffix is equal to (256), and the output
file contains the characters ABC.
Table E: Current string table values
Entry # Prefix pointer Suffix character
0 -1 0
1 -1 14
25 -1 25
256 65 A 66 B
257 66 B8 67 C
MaxCodes ” 7

Since Suffix is a code—in other words not an ASCII
character—we must expand it into the characters it repre-
sents. Fortunately, this is relatively easy. All we have to do is
look up the values for entry number 256, which just happen
to be Aand B, then write them to the output file. Couldn’t be
simpler, right? Well, almost. Stay with us for just a moment;
this is the hardest part—really. As we said, the current Prefix-
Suffix pair is (256)-C. However, the Suffix character in the
string table must always be an extended ASCII character,
since we can never read a compression code from an
uncompressed file. The solution is simply to look up the first
character by thec ion code and use that
as the Suffix value when we update the string table. When we
take this approach, the PrefixSuffix pair becomes CA. And
since the string table doesn’t contain that pair of characters,
we can add it to the table.

of
codes, that’s all it To
finish uncompressing the file, we just continue to read charac-
ters, writing them to the output file if they're ASCII characters

12 Insipe Microsorr Basic

or ling their values if they're compression codes.

The LZW.BAS program

To how LZW ion works, we created

the LZW.BAS program, shown in Listing 2 on page 14, which
i ines that ij LZW ding. Tablc Flists

each routine and its purpose.

To test the program, just load LZW into QBX and run it.
Alternatively, you can compile it with BC. LZW expects a
filename on the command line, so you'll need to supply one.
If you're running the program from QBX, simply choose the
Modify Commands$ option on the Run menu, enter a name,
then select the Start option.

Table F: LZW.BAS routines

’ various types, including programs and source code, before

we were confident enough to publish it. However, because
’ errant compression programs can ruin otherwise good files,
you may want to test the program several times yourself to
make sure your program matches ours.

limitations

‘The LZW BAS program has one severe limitation imposed to
enhance the readability and simplicity of the program listing,
‘We wrote it with this limitation because we wanted to
the of the method
without bogging you down with distracting details.
‘The primary problem is that the codes we send to the
output file are all the same length, since we write them to the
I il type variables. In Basic, integers
are 16bits long, so each code written to the output file has this
same length. The optimum method is to recognize that the
code values range from 0 to MAXCODES—the length of the
array—and output only the exact number of bits needed to
define a given code. For example, the first code available for
output is 256 ce you only need nine bits to write 256 in
binary, you could use only nine bits instead of 16—a savings
of more than 40 percent. By varying the bit length of the
codes, you can easily realize additional compression over the
current version of 1LZW. To make it easier to solve this
problem, we isolated cach file input and output operation in
its own routine, which you can replace without disturbing
the rest of the program.

Program enhancements

Name Purpose

Init Initializes string table and table
management variables

CompressFile Manages file compression process

UnCompressFile Uncompresses file

ManageTbl Looks up Prefix-Suffix character
pairs and manages insertion
process

InsertEntry Adds Prefix-Suffix pair to table

CompressDone Cleans up file compression
processes

ExpandValue Expands a compressed value into
its original values

OutputTable Outputs the string table for debug-
ging and inspection

InputCompValue Gets a value from a
file

InputUnCompValue Gets a value from an uncom-
pressed file

OutputCompValue Writes a value toacompressed file

OutputUnCompValue Writes a value to an uncom-
pressed file

1.2W will first call Init to initialize the string table, then the

€ C

P . r
compresses into a file named OUTPUT.BAS the file wh
name youpasson the thus, BAS d
change your original file. Once LZW finishes

sn't

The carly i of LZW stopped learning once
they filled the string table. This gave poor compression
statistics on some files. A newer feature, called adaptive reset,
clears the string table after it fills and begins all over again! As
you might imagine, this capability usually helps larger files
more than smaller files. In addition, there are numerous
variations on the 1ZW theme, including running the RLE
algorithm before doing LZW compression and clearing only
the least-used codes from the string table rather than the
entire table.

We made the program slightly more complex than it

feltwere

toachieve some
necessary to present the method. Specifically, we imple-
mented a linked list to search the string table instead of just

your file, it closes the input and output files, then starts
uncompressing OUTPUT.BAS into a file named
RESTORED.BAS. When LZW finishes the uncompression
process, there will be two new files on your disk—a com-
pressed version of your file in a file named OUTPUT.BAS and
an uncompressed file named RESTORED.BAS, which was
created from the compressed file.

If you run the DOS file COMPARE command on your
original file and RESTORED.BAS, they should match per-
fectly. We tested this program on more than 350 files of

p G .weheavily
the listing to help you when you examine it.

You should notice that the LZW algorithm makes no
attempt to optimize the strings it picks for compression—it
chooses the first match that comes along when searching the
string table. However, this may not always be the best match.

Conclusion
‘There are many compression algorithms available to address
the problems inherent in the LZW method, butas we found out

Seprvser 1991 73

in July’s article, data-compression algorithms arc much the
same as sorting algorithms—each exhibits best performance
‘when used in the correct situation. Experiment with LZW and
see if you can't tweak it to make it run faster or create smaller
compressed files—the twin goals of data ‘While

of bits per output byte written to the compressed file. Unfor-
tunately, that's a topic for a future article.

Gary Conway is the president of Infinity Design Concepts,
Inc,, (IDC) and co-developer of the ZIP file format. For

our code provides impressive compression of some files, you
may notice that others are actually larger than the original file.
Remember, we're writing fixed-ength integers to the output
file. To maximize file compression, you must vary the number

nf on IDC’s products call (502) 636-1234.

Blake Ragsdell is a consulting editor for Inside Microsoft
Basic and editor-in-chief of The Cobb Group's new Inside
Visual Basic. #

o e
Soul‘CC COdC 1]5‘]11@ (You can download listings from CGIS.)

The are the in the
preceding zrucks We placed the listings at the end to
preser ity, and 073

maintain readability in the two-column format. You can
download the listings from our online service, CGIS, at any

time of day. Use your 300, 1200, or 2400 baud modem with
8 data bits, 1 stop bit, and no parity to call CGIS at (502) 499-
2904. Your user ID is your customer number (the one- to
sevendigit number on the top line of your mailing label after
the).

Listing 1A: A better way to use BSAVE and BLOAD Listing 1B
* Makolmg a5 * Shoulnag Ba
a8 o demcnsteate video-hardvare {ndependeat . Pu'l:'ln dmontrate vides-hardare independent

* method of using BSAVE
DI Lnogek 10 1o}

eer nmpm screan
lmsxst(o m (1, 19)

PAINT (130, 49), 15

LINE (20, 14)-(160, 110), . B

* Restare physical davice vievport and vindov
* 50 GET will vork as advertised

il

IO

* Save the four quadrants that form this inage
GET (0, 0)-(319, 174). Inag
DEF SEG « V)

- ImageN(1)!
BSAVE "OUADY . IMG", VARPTR(Inaged (1)), 22004
&
T (30, O(68, 1) gk

DEF SEG = VARSEG(Inagek{1).
mﬁwmm‘ vumu-,am) 28004

m ln 175)-(319, 349), lupi
DEF SEG = VARSEG(
HA‘EW!NY‘ Vm(l-”(l)) 28004

GT (m lﬁ) (639, 349),

Inaged
ImageN(1))

EA‘E 'WIM MG, VARPTR(Imagen(1)), 28004
DEF SEG

*ALL dose!
BD

14 Tnsine Microsoer Basic

* mathod of using BLOKD

DIN Inaged(1 T0 14002)
St scree mude 9; sho page 1 (bl s bank)
oAl e 1o th mag In pog O
SREEN 9, , 0.
*Start umu imge
* Load the tirst q-mm
0S5 - WSS lngi 1)
BLOAD "OUAD1 IHG", VARPTR(l-nlm

DEF SEG
MID 0), It

Imw ", vm(mn)

mmn 0), Inagek
 Load the third quadrant
DEF SEG = VARSEGH Imaget (1))
BLOND "QUADS. ", VARPTRInaget 1))
OFF SEG.
PT (0, 1
" Load the tourth -t
OFF SEG = VARSEG| Inaged(1)
BLOD "OUDA. ", vmu-mm
0FF SEG
PUT (320, 175), Inaged
* Nov. both active asd visible pages
* ba page 0, to display the corplete lmge.
SREENS, , 0, 0
“Allow the user 1o view the inage
S
80

